Match the following functions with their level curves (a-d) and their graphs (A-D)
(1)
(2) $f(x, y)=\sin \sqrt{x^{2}+y^{2}}$ b C
(3)
 $f(x, y)=x^{2}+y^{2} \quad \underline{d} \quad \mathbf{A}$
(4) $f(x, y)=\sin (x-y) \xrightarrow{\square}$

A

B

D

(5) An arrow is shot from a height of 1.5 m , at an angle of 30 degrees above the horizontal with an initial speed of $100 \mathrm{~m} / \mathrm{sec}$. Find the range of the arrow.

$$
\vec{V}_{0}=\left\langle 100 \cos 30^{\circ}, 100 \sin 30^{\circ}\right\rangle=\langle 50 \sqrt{3}, 50\rangle
$$

$$
\begin{aligned}
& \vec{a}=-9.8 \vec{j}=\langle 0,-9.8\rangle \\
& \vec{v}=\langle 0,-9.8 t\rangle+\langle 50 \sqrt{3}, 50\rangle \\
& \vec{V}=\langle 50 \sqrt{3}, 50-9.8 t\rangle \\
& s=\left\langle 50 \sqrt{3} t, 50 t-4.9 t^{2}\right\rangle+\vec{S}_{0} \\
& s=\left\langle 50 \sqrt{3} t, 50 t-4.9 t^{2}+1.5\right\rangle
\end{aligned}
$$

Range what is the x component when the y component is zero?
Hits ground $50 t-4.9 t^{2}+1.5=0$

$$
-4.9 t^{2}+50 t+1.5=0
$$

Time of ipad $t=\frac{-50 \pm \sqrt{50^{2}+4.9(4)(1-5)}}{-4.9(2)}$

$$
t=\frac{-50 \neq \sqrt{2500+29.4}}{-9.8} \approx 10.23 \mathrm{sec}
$$

X component ct impact: $50 \sqrt{3} t \approx 886 \mathrm{~m}$

